Extracts LUC transitions for all input grids of the time series.

contingencyTable(input_raster, pixelresolution = 30)

Arguments

input_raster

path (character), Raster* object or list of Raster* objects. See
raster for more information about supported file types.

pixelresolution

numeric. The pixel spatial resolution in meter.

Value

A list that contains 5 objects.

  • lulc_Mulstistep: <tibble> Contingency table for all analysed time steps, containing 8 columns:

    1. Period: <chr> The period [Yt, Yt+1].

    2. From: <dbl> numerical code of a LUC category i.

    3. To: <dbl> numerical code of a LUC category j.

    4. km2: <dbl> Area in square kilometers that transited from the category i to category j in the period from Yt to Yt+1.

    5. Interval: <dbl> Interval of years between the first and the last year of the period [Yt, Yt+1].

    6. QtPixel: <int> Pixel count that transited from the categories i to category j in the period from Yt to Yt+1.

    7. yearFrom: <chr> The year that the change comes from [Yt].

    8. yearTo: <chr> The year that the change goes for [Yt+1].

  • lulc_Onestep:<tibble> Contingency table for the entire analysed period [Y1, YT], containing 8 columns identical with lulc_Mulstistep.

  • tb_legend: <tibble> A table of the pixel value, his name and color containing 3 columns:

    1. categoryValue: <dbl> the pixel value of the LUC category.

    2. categoryName: <factor> randomly created string associated with a given pixel value of a LUC category.

    3. color: <chr> random color associated with the given pixel value of a LUC category. Before further analysis, one would like to change the categoryName and color values.

      • Therefore the category names have to be in the same order as the categoryValue and the levels should be put in the right order for legend plotting. Like:

        
                myobject$tb_legend$categoryName &lt;- factor(c("name1", "name2", "name3", "name4"),
                                                       levels = c("name3", "name2", "name1", "name4"))
      • The colors have to in the same order as the values in the categoryValue column. Colors can be given by the color name (eg. "black") or an HEX value (eg. #FFFFFF). Like:

        
               myobject$tb_legend$color &lt;- c("#CDB79E", "red", "#66CD00", "yellow")
  • totalArea: <tibble> A table with the total area of the study area containing 2 columns:

    1. area_km2: <numeric> The total area in square kilometers.

    2. QtPixel: <numeric> The total area in pixel counts.

  • totalInterval: <numeric> Total interval of the analysed time series in years.

Examples

# \donttest{ url <- "https://zenodo.org/record/3685230/files/SaoLourencoBasin.rda?download=1" temp <- tempfile() download.file(url, temp, mode = "wb") #downloading the online dataset load(temp) # the contingencyTable() function, with the SaoLourencoBasin dataset contingencyTable(input_raster = SaoLourencoBasin, pixelresolution = 30)
#> | | | 0% | |========== | 14% | |==================== | 29% | |============================== | 43% | |======================================== | 57% | |================================================== | 71% | |============================================================ | 86% | |======================================================================| 100% #> #> | | | 0% | |========== | 14% | |==================== | 29% | |============================== | 43% | |======================================== | 57% | |================================================== | 71% | |============================================================ | 86% | |======================================================================| 100% #> #> | | | 0% | |========== | 14% | |==================== | 29% | |============================== | 43% | |======================================== | 57% | |================================================== | 71% | |============================================================ | 86% | |======================================================================| 100% #> #> | | | 0% | |========== | 14% | |==================== | 29% | |============================== | 43% | |======================================== | 57% | |================================================== | 71% | |============================================================ | 86% | |======================================================================| 100% #> #> | | | 0% | |========== | 14% | |==================== | 29% | |============================== | 43% | |======================================== | 57% | |================================================== | 71% | |============================================================ | 86% | |======================================================================| 100% #>
#> $lulc_Multistep #> # A tibble: 130 x 8 #> Period From To km2 QtPixel Interval yearFrom yearTo #> <chr> <int> <int> <dbl> <int> <int> <int> <int> #> 1 2002-2008 2 2 6543. 7269961 6 2002 2008 #> 2 2002-2008 2 10 1.56 1736 6 2002 2008 #> 3 2002-2008 2 11 55.2 61320 6 2002 2008 #> 4 2002-2008 2 12 23.9 26609 6 2002 2008 #> 5 2002-2008 3 2 37.5 41649 6 2002 2008 #> 6 2002-2008 3 3 2133. 2370190 6 2002 2008 #> 7 2002-2008 3 7 155. 172718 6 2002 2008 #> 8 2002-2008 3 11 7.48 8307 6 2002 2008 #> 9 2002-2008 3 12 0.356 395 6 2002 2008 #> 10 2002-2008 3 13 0.081 90 6 2002 2008 #> # … with 120 more rows #> #> $lulc_Onestep #> # A tibble: 45 x 8 #> Period From To km2 QtPixel Interval yearFrom yearTo #> <chr> <int> <int> <dbl> <int> <int> <int> <int> #> 1 2002-2014 2 2 6169. 6854816 12 2002 2014 #> 2 2002-2014 2 9 2.39 2651 12 2002 2014 #> 3 2002-2014 2 10 10.4 11513 12 2002 2014 #> 4 2002-2014 2 11 412. 457631 12 2002 2014 #> 5 2002-2014 2 12 29.7 33015 12 2002 2014 #> 6 2002-2014 3 2 110. 121762 12 2002 2014 #> 7 2002-2014 3 3 2091. 2323665 12 2002 2014 #> 8 2002-2014 3 7 116. 129304 12 2002 2014 #> 9 2002-2014 3 9 7.00 7774 12 2002 2014 #> 10 2002-2014 3 11 9.32 10359 12 2002 2014 #> # … with 35 more rows #> #> $tb_legend #> # A tibble: 11 x 3 #> categoryValue categoryName color #> <int> <fct> <chr> #> 1 2 WKY #DD9191 #> 2 3 EUL #A13F3F #> 3 4 BFD #6F8DD2 #> 4 5 PBC #C5CFF0 #> 5 7 YVK #002F70 #> 6 8 GUF #F9DCDC #> 7 9 IVJ #295EAE #> 8 10 UBQ #5F1415 #> 9 11 TXV #F3C5C5 #> 10 12 AFB #F9EFEF #> 11 13 SNA #EFF1F8 #> #> $totalArea #> # A tibble: 1 x 2 #> area_km2 QtPixel #> <dbl> <int> #> 1 22418. 24908860 #> #> $totalInterval #> [1] 12 #>
# }